DISLIN Beispiele / Julia
Demonstration of CURVE / Julia
using Dislin
n = 300
fpi = 3.1415926 / 180
stp = 360.0 / (n - 1)
xray = Array{Float64}(n)
y1ray = Array{Float64}(n)
y2ray = Array{Float64}(n)
for i = 1:n
xray[i] = (i - 1) * stp
x = xray[i] * fpi
y1ray[i] = sin(x)
y2ray[i] = cos(x)
end
Dislin.scrmod("revers")
Dislin.metafl("xwin")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.axspos(450, 1800)
Dislin.axslen(2200, 1200)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.labdig(-1, "X")
Dislin.ticks(10, "Y")
Dislin.ticks(9, "X")
Dislin.titlin("Demonstration of CURVE", 1)
Dislin.titlin("SIN(X), COS(X)", 3)
ic = Dislin.intrgb(0.95, 0.95, 0.95)
Dislin.axsbgd(ic)
Dislin.graf(0.0, 360.0, 0.0, 90.0, -1.0, 1.0, -1.0, 0.5)
Dislin.setrgb(0.7, 0.7, 0.7)
Dislin.grid(1, 1)
Dislin.color("fore")
Dislin.height(50)
Dislin.title()
Dislin.color("red")
Dislin.curve(xray, y1ray, n)
Dislin.color("green")
Dislin.curve(xray, y2ray, n)
Dislin.disfin()
Polar Plots / Julia
using Dislin
n = 300
m = 10
step = 360.0 / (n - 1)
xray = Array{Float64}(n)
x1 = Array{Float64}(n)
y1 = Array{Float64}(n)
x2 = Array{Float64}(m)
y2 = Array{Float64}(m)
for i = 1:n
xray[i] = (i - 1) * step
y1[i] = ((i - 1) * step) * 3.1415926 / 180.0
x1[i] = sin(5 * y1[i])
end
for i = 1:m
x2[i] = i
y2[i] = i
end
Dislin.setpag("da4p")
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.disini()
Dislin.complx()
Dislin.pagera()
Dislin.titlin("Polar Plots", 2)
Dislin.ticks(3, "Y")
Dislin.axends("NOENDS", "X")
Dislin.labdig(-1, "Y")
Dislin.axslen(1000, 1000)
Dislin.axsorg(1050, 900)
ic = Dislin.intrgb(0.95,0.95,0.95)
Dislin.axsbgd(ic)
Dislin.grafp(1.0, 0.0, 0.2, 0.0, 30.0);
Dislin.color("blue")
Dislin.curve(x1, y1, n)
Dislin.color("fore")
Dislin.htitle(50)
Dislin.title()
Dislin.endgrf()
Dislin.labdig(-1, "X")
Dislin.axsorg(1050, 2250)
Dislin.labtyp("VERT", "Y")
Dislin.grafp(10.0, 0.0, 2.0, 0.0, 30.0)
Dislin.barwth(-5.0)
Dislin.polcrv("FBARS")
Dislin.color("blue")
Dislin.curve(x2, y2, m)
Dislin.disfin()
Symbols / Julia
using Dislin
ctit = "Symbols"
Dislin.setpag("da4p")
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.hwfont()
Dislin.paghdr("H. Michels (", ")", 2, 0)
Dislin.height(60)
nl = Dislin.nlmess(ctit)
Dislin.messag(ctit, div(2100 - nl, 2), 200)
Dislin.height(50)
Dislin.hsymbl(120)
ny = 150
nxp = 0
for j = 1:24
i = j - 1
x = j - 1.0
if((i % 4) == 0)
ny = ny + 400
nxp = 550
else
nxp = nxp + 350
end
nl = Dislin.nlnumb(x, -1)
Dislin.number(x, -1, nxp - div(nl, 2), ny + 150)
Dislin.symbol(i, nxp, ny)
end
Dislin.disfin()
Interpolation Methods / Julia
using Dislin
ctit = "Interpolation Methods"
xray = [0.0, 1.0, 3.0, 4.5, 6.0, 8.0, 9.0, 11.0, 12.0, 12.5,
13.0, 15.0, 16.0, 17.0, 19.0, 20.0]
yray = [2.0, 4.0, 4.5, 3.0, 1.0, 7.0, 2.0, 3.0, 5.0, 2.0, 2.5,
2.0, 4.0, 6.0, 5.5, 4.0]
cpol = ["SPLINE", "STEM", "BARS", "STAIRS", "STEP", "LINEAR"]
Dislin.setpag("da4p")
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.incmrk(1)
Dislin.hsymbl(25)
Dislin.titlin(ctit, 1)
Dislin.axslen(1500, 350)
Dislin.setgrf("LINE", "LINE", "LINE", "LINE")
ic = Dislin.intrgb(1.0, 1.0, 0.0)
Dislin.axsbgd(ic)
nya = 2700
for i = 1:6
Dislin.axspos(350, nya - (i - 1) * 350)
Dislin.polcrv(cpol[i])
Dislin.marker(0)
Dislin.graf(0.0, 20.0, 0.0, 5.0, 0.0, 10.0, 0.0, 5.0)
nx = Dislin.nxposn(1.0)
ny = Dislin.nyposn(8.0)
Dislin.messag(cpol[i], nx, ny)
Dislin.color("red")
Dislin.curve(xray, yray, 16)
Dislin.color("fore")
if (i == 6)
Dislin.height(50)
Dislin.title()
end
Dislin.endgrf()
end
Dislin.disfin()
Bar Graphs / Julia
using Dislin
x = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
y = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
y1 = [1.0, 1.5, 2.5, 1.3, 2.0, 1.2, 0.7, 1.4, 1.1]
y2 = [2.0, 2.7, 3.5, 2.1, 3.2, 1.9, 2.0, 2.3, 1.8]
y3 = [4.0, 3.5, 4.5, 3.7, 4.0, 2.9, 3.0, 3.2, 2.6]
cbuf = Array{UInt8}(80)
nya = 2700
ctit = "Bar Graphs(BARS)"
Dislin.scrmod("revers")
Dislin.setpag("da4p")
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.ticks(1, "x")
Dislin.intax()
Dislin.axslen(1600, 700)
Dislin.titlin(ctit, 3)
Dislin.legini(cbuf, 3, 8)
Dislin.leglin(cbuf, "FIRST", 1)
Dislin.leglin(cbuf, "SECOND", 2)
Dislin.leglin(cbuf, "THIRD", 3)
Dislin.legtit(" ")
Dislin.shdpat(5)
for i = 1:3
if (i > 1)
Dislin.labels("none","x")
end
Dislin.axspos(300, nya - (i - 1) * 800)
Dislin.graf(0.0, 10.0, 0.0, 1.0, 0.0, 5.0, 0.0, 1.0)
if (i == 1)
Dislin.bargrp(3, 0.15)
Dislin.color("red")
Dislin.bars(x, y, y1, 9)
Dislin.color("green")
Dislin.bars(x, y, y2, 9)
Dislin.color("blue")
Dislin.bars(x, y, y3, 9)
Dislin.color("fore")
Dislin.reset("bargrp")
elseif (i == 2)
Dislin.height(30)
Dislin.labels("delta","bars")
Dislin.labpos("center","bars")
Dislin.color("red")
Dislin.bars(x, y, y1, 9)
Dislin.color("green")
Dislin.bars(x, y1, y2, 9)
Dislin.color("blue")
Dislin.bars(x, y2, y3, 9)
Dislin.color("fore")
Dislin.reset("height")
elseif (i == 3)
Dislin.labels("second", "bars")
Dislin.labpos("outside", "bars")
Dislin.color("red")
Dislin.bars(x, y, y1, 9)
Dislin.color("fore")
end
if (i != 3)
Dislin.legend(cbuf,7)
end
if (i == 3)
Dislin.height(50)
Dislin.title()
end
Dislin.endgrf()
end
Dislin.disfin()
Pie Charts / Julia
using Dislin
xray = [1.0, 2.5, 2.0, 2.7, 1.8]
cbuf = Array{UInt8}(80)
ctit = "Pie Charts(PIEGRF)"
Dislin.scrmod("revers")
Dislin.setpag("da4p")
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.chnpie("BOTH")
Dislin.axslen(1600, 1000)
Dislin.titlin(ctit, 2)
Dislin.legini(cbuf, 5, 8)
Dislin.leglin(cbuf, "FIRST", 1)
Dislin.leglin(cbuf, "SECOND", 2)
Dislin.leglin(cbuf, "THIRD", 3)
Dislin.leglin(cbuf, "FOURTH", 4)
Dislin.leglin(cbuf, "FIFTH", 5)
# Selecting shading patterns
Dislin.patcyc(1, 7)
Dislin.patcyc(2, 4)
Dislin.patcyc(3, 13)
Dislin.patcyc(4, 3)
Dislin.patcyc(5, 5)
Dislin.axspos(250, 2800)
Dislin.piegrf(cbuf, 1, xray, 5)
Dislin.endgrf()
Dislin.axspos(250, 1600)
Dislin.labels("DATA", "PIE")
Dislin.labpos("EXTERNAL", "PIE")
Dislin.piegrf(cbuf, 1, xray, 5)
Dislin.height(50)
Dislin.title()
Dislin.disfin()
3-D Bar Graph / 3-D Pie Chart / Julia
using Dislin
xray = [2.0, 4.0, 6.0, 8.0, 10.0]
y1ray = [0.0, 0.0, 0.0, 0.0, 0.0]
y2ray = [3.2, 1.5, 2.0, 1.0, 3.0]
ic1ray = [50, 150, 100, 200, 175]
ic2ray = [50, 150, 100, 200, 175]
ic1 = Array{Int32}(5)
ic2 = Array{Int32}(5)
for i = 1:5
ic1[i] = ic1ray[i]
ic2[i] = ic2ray[i]
end
cbuf = Array{UInt8}(80)
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.setpag("da4p")
Dislin.disini()
Dislin.pagera()
Dislin.hwfont()
Dislin.titlin("3-D Bar Graph / 3-D Pie Chart", 2)
Dislin.htitle(40)
Dislin.shdpat(16)
Dislin.axslen(1500, 1000)
Dislin.axspos(300, 1400)
Dislin.barwth(0.5)
Dislin.bartyp("3dvert")
Dislin.labels("second", "bars")
Dislin.labpos("outside", "bars")
Dislin.labclr(255, "bars")
Dislin.graf(0.0, 12.0, 0.0, 2.0, 0.0, 5.0, 0.0, 1.0)
Dislin.title()
Dislin.color("red")
Dislin.bars(xray, y1ray, y2ray, 5)
Dislin.endgrf()
Dislin.shdpat(16)
Dislin.labels("data", "pie")
Dislin.labclr(255, "pie")
Dislin.chnpie("none")
Dislin.pieclr(ic1, ic2, 5) # integer arrays must be Int32
Dislin.pietyp("3d")
Dislin.axspos(300, 2700)
Dislin.piegrf(cbuf, 0, y2ray, 5)
Dislin.disfin()
3-D Bars / BARS3D / Julia
using Dislin
n = 18
xray = [1.0, 3.0, 8.0, 1.5, 9.0, 6.3, 5.8, 2.3, 8.1, 3.5,
2.2, 8.7, 9.2, 4.8, 3.4, 6.9, 7.5, 3.8]
yray = [5.0, 8.0, 3.5, 2.0, 7.0, 1.0, 4.3, 7.2, 6.0, 8.5,
4.1, 5.0, 7.3, 2.8, 1.6, 8.9, 9.5, 3.2]
z1ray = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
z2ray = [4.0, 5.0, 3.0, 2.0, 3.5, 4.5, 2.0, 1.6, 3.8, 4.7,
2.1, 3.5, 1.9, 4.2, 4.9, 2.8, 3.6, 4.3]
icray = [30, 30, 30, 30, 30, 30, 100, 100, 100, 100,
100, 100, 170, 170, 170, 170, 170, 170]
icr = Array{Int32}(n)
cbuf = Array{UInt8}(80)
for i = 1:n
icr[i] = icray[i]
end
xwray = Array{Float64}(n)
ywray = Array{Float64}(n)
for i = 1:n
xwray[i] = 0.5
ywray[i] = 0.5
end
Dislin.scrmod("revers")
Dislin.metafl("xwin")
Dislin.setpag("da4p")
Dislin.disini()
Dislin.hwfont()
Dislin.pagera()
Dislin.axspos(200, 2600)
Dislin.axslen(1800, 1800)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.name("Z-axis", "Z")
Dislin.titlin("3-D Bars / BARS3D",3)
Dislin.labl3d("hori")
Dislin.graf3d(0.0,10.0,0.0,2.0,0.0,10.0,0.0,2.0,0.0,5.0,0.0,1.0)
Dislin.grid3d(1, 1, "bottom")
Dislin.bars3d(xray, yray, z1ray, z2ray, xwray, ywray, icr, n)
Dislin.legini(cbuf, 3, 20)
Dislin.legtit(" ")
Dislin.legpos(1350, 1150)
Dislin.leglin(cbuf, "First", 1)
Dislin.leglin(cbuf, "Second", 2)
Dislin.leglin(cbuf, "Third", 3)
Dislin.legend(cbuf, 3)
Dislin.height(50)
Dislin.title()
Dislin.disfin()
Shading Patterns / Julia
using Dislin
ix = [0, 300, 300, 0]
iy = [0, 0, 400, 400]
ixp = Array{Int32}(4)
iyp = Array{Int32}(4)
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.disini()
Dislin.setvlt("small")
Dislin.pagera()
Dislin.complx()
Dislin.height(50)
ctit = "Shading patterns (AREAF)"
nl = Dislin.nlmess(ctit)
Dislin.messag(ctit, div(2970 - nl, 2), 200)
nx0 = 335
ny0 = 350
iclr = 0
for i = 0:2
ny = ny0 + i * 600
for j = 0:5
nx = nx0 + j * 400
ii = i * 6 + j
x = i * 6.0 + j
Dislin.shdpat(ii)
iclr = iclr + 1
iclr = iclr % 8
if (iclr == 0)
iclr = 8
end
Dislin.setclr(iclr)
for k = 1:4
ixp[k] = ix[k] + nx
iyp[k] = iy[k] + ny
end
Dislin.areaf(ixp, iyp, 4)
nl = Dislin.nlnumb(x, -1)
nx = nx + div(300 - nl, 2)
Dislin.color("foreground")
Dislin.number(x, -1, nx, ny + 460)
end
end
Dislin.disfin()
3-D Colour Plot / Julia
using Dislin
ctit1 = "3-D Colour Plot of the Function"
ctit2 = "F(X,Y) = 2 * SIN(X) * SIN (Y)"
n = 100
m = 100
zmat = Array{Float64}(n, m)
fpi = 3.1415927 / 180.0
stepx = 360.0 / (n - 1)
stepy = 360.0 / (m - 1)
for i = 1:n
x = (i - 1) * stepx
for j = 1:m
y = (j - 1) * stepy
zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi)
end
end
Dislin.metafl("xwin")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.titlin(ctit1, 1)
Dislin.titlin(ctit2, 3)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.name("Z-axis", "Z")
Dislin.intax()
Dislin.autres(n, m)
Dislin.axspos(300, 1850)
Dislin.ax3len(2200, 1400, 1400)
Dislin.graf3(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-2.0, 2.0, -2.0, 1.0)
Dislin.crvmat(zmat, n, m, 1, 1)
Dislin.height(50)
Dislin.title()
Dislin.disfin()
Surface Plot / Julia
using Dislin
ctit1 = "Surface Plot of the Function"
ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)"
n = 50
m = 50
zmat = Array{Float64}(n, m)
fpi = 3.1415927 / 180.0
stepx = 360.0 / (n - 1)
stepy = 360.0 / (m - 1)
for i = 1:n
x = (i - 1) * stepx
for j = 1:m
y = (j - 1) * stepy
zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi)
end
end
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.setpag("da4p")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.titlin(ctit1, 2)
Dislin.titlin(ctit2, 4)
Dislin.axspos(200, 2600)
Dislin.axslen(1800, 1800)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.name("Z-axis", "Z")
Dislin.view3d(-5.0, -5.0, 4.0, "ABS")
Dislin.graf3d(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-3.0, 3.0, -3.0, 1.0)
Dislin.height(50)
Dislin.title()
Dislin.color("green")
Dislin.surmat(zmat, n, m, 1, 1)
Dislin.disfin()
Shaded Surface Plot / Julia
using Dislin
ctit1 = "Surface Plot of the Function"
ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)"
n = 50
m = 50
zmat = Array{Float64}(n, m)
xray = Array{Float64}(n)
yray = Array{Float64}(m)
fpi = 3.1415927 / 180.0
stepx = 360.0 / (n - 1)
stepy = 360.0 / (m - 1)
for i = 1:n
x = (i - 1) * stepx
xray[i] = x
for j = 1:m
y = (j - 1) * stepy
zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi)
end
end
for j = 1:m
yray[j] = (j - 1) * stepy
end
Dislin.metafl("cons")
Dislin.scrmod("revers")
Dislin.setpag("da4p")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.titlin(ctit1, 2)
Dislin.titlin(ctit2, 4)
Dislin.axspos(200, 2600)
Dislin.axslen(1800, 1800)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.name("Z-axis", "Z")
Dislin.view3d(-5.0, -5.0, 4.0, "ABS")
Dislin.graf3d(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-3.0, 3.0, -3.0, 1.0)
Dislin.height(50)
Dislin.title()
Dislin.shdmod("smooth", "surface")
Dislin.surshd(xray,n,yray,n,zmat)
Dislin.disfin()
Contour Plot / Julia
using Dislin
ctit1 = "Contour Plot"
ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)"
n = 50
m = 50
xray = Array{Float64}(n)
yray = Array{Float64}(m)
zlev = Array{Float64}(12)
zmat = Array{Float64}(n, m)
fpi = 3.1415927 / 180.0
stepx = 360.0 / (n - 1)
stepy = 360.0 / (m - 1)
for i = 1:n
xray[i] = (i - 1) * stepx
end
for i = 1:m
yray[i] = (i - 1) * stepy
end
for i = 1:n
x = (i - 1) * stepx
for j = 1:m
y = (j - 1) * stepy
zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi)
end
end
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.setpag("da4p")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.titlin(ctit1, 1)
Dislin.titlin(ctit2, 3)
Dislin.intax()
Dislin.axspos(450, 2650)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.graf(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0)
Dislin.height(50)
Dislin.title()
Dislin.height(30)
for i = 1:9
zlev = -2.0 + i * 0.5
if (i == 5)
Dislin.labels("NONE", "CONTUR")
else
Dislin.labels("FLOAT", "CONTUR")
end
Dislin.setclr(i * 28)
Dislin.contur(xray, n, yray, m, zmat, zlev)
end
Dislin.disfin()
Shaded Contour Plot / Julia
using Dislin
ctit1 = "Shaded Contour Plot"
ctit2 = "F(X,Y) =(X[2\$ - 1)[2\$ +(Y[2\$ - 1)[2\$"
n = 50
m = 50
xray = Array{Float64}(n)
yray = Array{Float64}(m)
zlev = Array{Float64}(12)
zmat = Array{Float64}(n, m)
stepx = 1.6 /(n - 1)
stepy = 1.6 /(m - 1)
for i = 1:n
xray[i] = (i - 1) * stepx
end
for i = 1:m
yray[i] = (i - 1) * stepy
end
for i = 1:n
x = xray[i] * xray[i] - 1.0
x = x * x
for j = 1:m
y = yray[j] * yray[j] - 1.0
zmat[i,j] = x + y * y
end
end
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.setpag("da4p")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.mixalf()
Dislin.titlin(ctit1, 1)
Dislin.titlin(ctit2, 3)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.axspos(450, 2670)
Dislin.shdmod("poly", "contur")
Dislin.graf(0.0, 1.6, 0.0, 0.2, 0.0, 1.6, 0.0, 0.2)
for i = 1:12
zlev[13-i] = 0.1 + (i - 1) * 0.1
end
Dislin.conshd(xray, n, yray, m, zmat, zlev, 12)
Dislin.height(50)
Dislin.title()
Dislin.disfin()
Shaded Surface / Contour Plot / Julia
using Dislin
ctit1 = "Shaded Surface / Contour Plot"
ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)"
n = 50
m = 50
nlev = 20
zmat = Array{Float64}(n, m)
xray = Array{Float64}(n)
yray = Array{Float64}(m)
zlev = Array{Float64}(nlev)
fpi = 3.1415927 / 180.0
stepx = 360.0 /(n - 1)
stepy = 360.0 /(m - 1)
for i = 1:n
x = (i - 1) * stepx
xray[i] = x
for j = 1:m
y = (j - 1) * stepy
yray[j] = y
zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi)
end
end
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.setpag("da4p")
Dislin.disini()
Dislin.pagera()
Dislin.hwfont()
Dislin.titlin(ctit1, 2)
Dislin.titlin(ctit2, 4)
Dislin.axspos(200, 2600)
Dislin.axslen(1800, 1800)
Dislin.name("X-axis", "X")
Dislin.name("Y-axis", "Y")
Dislin.name("Z-axis", "Z")
Dislin.graf3d(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-2.0, 2.0, -2.0, 1.0)
Dislin.height(50)
Dislin.title()
Dislin.grfini(-1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0)
Dislin.nograf()
Dislin.graf(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0)
step = 4.0 / nlev
for i = 1:nlev
zlev[i] = -2.0 + (i - 1) * step
end
Dislin.conshd(xray, n, yray, n, zmat, zlev, nlev)
Dislin.box2d()
Dislin.reset("nograf")
Dislin.grffin()
Dislin.shdmod("smooth", "surface")
Dislin.surshd(xray, n, yray, m, zmat)
Dislin.disfin()
Spheres and Tubes / Julia
using Dislin
x = [10.0, 20.0, 10.0, 20.0, 5.0, 15.0, 25.0, 5.0, 15.0, 25.0,
5.0, 15.0, 25.0, 10.0, 20.0, 10.0, 20.0]
y = [10.0, 10.0, 20.0, 20.0, 5.0, 5.0, 5.0, 15.0, 15.0, 15.0,
25.0, 25.0, 25.0, 10.0, 10.0, 20.0, 20.0]
z = [5.0, 5.0, 5.0, 5.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0,
15.0, 15.0, 15.0, 25.0, 25.0, 25.0, 25.0]
idx = [1, 2, 1, 3, 3, 4, 2, 4, 5, 6, 6, 7, 8, 9, 9, 10,
11, 12, 12, 13, 5, 8, 8, 11, 6, 9, 9, 12, 7, 10,
10, 13, 14, 15, 16, 17, 14, 16, 15, 17,
1, 5, 2, 7, 3, 11, 4, 13, 5, 14, 7, 15, 11, 16, 13, 17]
Dislin.setpag("da4p")
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.hwfont()
Dislin.light("on")
Dislin.matop3(0.02, 0.02, 0.02, "specular")
Dislin.clip3d("none")
Dislin.axspos(0, 2500)
Dislin.axslen(2100, 2100)
Dislin.htitle(50)
Dislin.titlin("Spheres and Tubes", 4)
Dislin.name("X-axis", "x")
Dislin.name("Y-axis", "y")
Dislin.name("Z-axis", "z")
Dislin.labdig(-1, "xyz")
Dislin.labl3d("hori")
Dislin.graf3d(0.0, 30.0, 0.0, 5.0, 0.0, 30.0, 0.0, 5.0, 0.0, 30.0, 0.0, 5.0)
Dislin.title()
Dislin.shdmod("smooth", "surface")
iret = Dislin.zbfini()
Dislin.matop3(1.0, 0.0, 0.0, "diffuse")
for i = 1:17
Dislin.sphe3d(x[i], y[i], z[i], 2.0, 50, 25)
end
Dislin.matop3(0.0, 1.0, 0.0, "diffuse")
for i = 1:28
j = 2 * i
j1 = idx[j-1]
j2 = idx[j]
Dislin.tube3d(x[j1], y[j1], z[j1],
x[j2], y[j2], z[j2], 0.5, 5, 5)
end
Dislin.zbffin()
Dislin.disfin()
Some Solids / Julia
using Dislin
Dislin.setpag("da4p")
Dislin.scrmod("revers")
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.hwfont()
Dislin.light("on")
Dislin.litop3(1,0.5,0.5,0.5,"ambient")
Dislin.clip3d("none")
Dislin.axspos(0, 2500)
Dislin.axslen(2100, 2100)
Dislin.htitle(60)
Dislin.titlin("Some Solids", 4)
Dislin.nograf()
Dislin.graf3d(-5.0, 5.0, -5.0, 2.0, -5.0, 5.0, -5.0, 2.0,
-5.0, 5.0, -5.0, 2.0)
Dislin.title()
Dislin.shdmod("smooth", "surface")
iret = Dislin.zbfini()
Dislin.matop3(1.0, 0.5, 0.0, "diffuse")
Dislin.tube3d(-3.0, -3.0, 8.0, 2.0, 3.0, 5.5, 1.0, 40, 20)
Dislin.rot3d(-60.0, 0.0, 0.0)
Dislin.matop3(1.0, 0.0, 1.0, "diffuse")
Dislin.setfce("bottom")
Dislin.matop3(1.0, 0.0, 0.0, "diffuse")
Dislin.cone3d(-3.0, -3.0, 3.5, 2.0, 3.0, 3.0, 40, 20)
Dislin.setfce("top")
Dislin.rot3d(0.0, 0.0, 0.0)
Dislin.matop3(0.0, 1.0, 1.0, "diffuse")
Dislin.plat3d(4.0, 4.0, 3.0, 3.0, "icos")
Dislin.rot3d(0.0, 0.0, 0.0)
Dislin.matop3(1.0, 1.0, 0.0, "diffuse")
Dislin.sphe3d(0.0, 0.0, 0.0, 3.0, 40, 20)
Dislin.rot3d(0.0, 0.0, -20.0)
Dislin.matop3(0.0, 0.0, 1.0, "diffuse")
Dislin.quad3d(-4.0, -4.0, -3.0, 3.0, 3.0, 3.0)
Dislin.rot3d(0.0, 0.0, 30.0)
Dislin.matop3(1.0, 0.3, 0.3, "diffuse")
Dislin.pyra3d(-2.0, -5.0, -10.0, 3.0, 5.0, 5.0, 4)
Dislin.rot3d(0.0, 0.0, 0.0)
Dislin.matop3(1.0, 0.0, 0.0, "diffuse")
Dislin.torus3d(7.0, -3.0, -2.0, 1.5, 3.5, 1.5, 0.0, 360.0, 40, 20)
Dislin.rot3d(0.0, 90.0, 0.0)
Dislin.matop3(0.0, 1.0, 0.0, "diffuse")
Dislin.torus3d(7.0, -5.0, -2.0, 1.5, 3.5, 1.5, 0.0, 360.0, 40, 20)
Dislin.zbffin()
Dislin.disfin()
Map Plot / Julia
using Dislin
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.axspos(400, 1850)
Dislin.axslen(2400, 1400)
Dislin.name("Longitude", "X")
Dislin.name("Latitude", "Y")
Dislin.titlin("World Coastlines and Lakes", 3)
Dislin.labels("MAP", "XY")
Dislin.labdig(-1, "XY")
Dislin.grafmp(-180.0, 180.0, -180.0, 90.0,
-90.0, 90.0, -90.0, 30.0)
Dislin.gridmp(1,1)
Dislin.color("green")
Dislin.world()
Dislin.color("fore")
Dislin.height(50)
Dislin.title()
Dislin.disfin()
Tex Instructions for Mathematical Formulas / Julia
using Dislin
Dislin.scrmod("revers")
Dislin.setpag("da4p")
Dislin.metafl("cons")
Dislin.disini()
Dislin.pagera()
Dislin.complx()
Dislin.height(40)
cstr = "TeX Instructions for Mathematical Formulas"
nl = Dislin.nlmess(cstr)
Dislin.messag(cstr, div(2100 - nl, 2), 100)
Dislin.texmod("on")
Dislin.messag("\$\\frac{1}{x+y}\$", 150, 400)
Dislin.messag("\$\\frac{a^2 - b^2}{a+b} = a - b\$", 1200, 400)
Dislin.messag("\$r = \\sqrt{x^2 + y^2}", 150, 700)
Dislin.messag("\$\\cos \\phi = \\frac{x}{\\sqrt{x^2 + y^2}}\$", 1200, 700)
Dislin.messag("\$\\Gamma(x) = \\int_0^\\infty e^{-t}t^{x-1}dt\$", 150, 1000)
Dislin.messag("\$\\lim_{x \\to \\infty}(1 + \\frac{1}{x})^x = e\$", 1200, 1000)
Dislin.messag("\$\\mu = \\sum_{i=1}^n x_i p_i\$", 150, 1300)
Dislin.messag("\$\\mu = \\int_{-\\infty}^ \\infty x f(x) dx\$", 1200, 1300)
Dislin.messag("\$\\overline{x} = \\frac{1}{n} \\sum_{i=1}^n x_i\$", 150, 1600)
Dislin.messag("\$s^2 = \\frac{1}{n-1} \\sum_{i=1}^n(x_i - \\overline{x})^2\$",
1200, 1600)
Dislin.messag("\$\\sqrt[n]{\\frac{x^n - y^n}{1 + u^{2n}}}\$", 150, 1900)
Dislin.messag("\$\\sqrt[3]{-q + \\sqrt{q^2 + p^3}}\$", 1200, 1900)
Dislin.messag("\$\\int \\frac{dx}{1+x^2} = \\arctan x + C\$", 150, 2200)
Dislin.messag("\$\\int \\frac{dx}{\\sqrt{1+x^2}} = {\\rm arsinh} x + C\$",
1200, 2200)
Dislin.messag("\$\\overline{P_1P_2} = \\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}\$",
150,2500)
Dislin.messag("\$x = \\frac{x_1 + \\lambda x_2}{1 + \\lambda}\$", 1200, 2500)
Dislin.disfin()
News
DISLIN-Handbuch als eBook von Amazon
5. April 2025
Support für OpenBSD 64-bit
17. Januar 2025
Support für Python 3.13 und Windows
17. Januar 2025
PDF-Handbuch der Version 11.5.2
8. Januar 2025
Update 11.5.2
8. April 2024
Support für Python 3.11 und Windows
28. Juli 2023
Bugfix für die X11-Distributionen
22. Juli 2023
Update 11.5.1
25. April 2023
Support für Linux 64-bit auf IBM z Rechnern
30. Oktober 2022
Support für MingW 64-bit mit UCRT Runtime-Umgebung
28. September 2022
Release 11.5
15. März 2022
DISLIN-Buch Version 11 ist erhältlich
8. März 2017
5. April 2025
Support für OpenBSD 64-bit
17. Januar 2025
Support für Python 3.13 und Windows
17. Januar 2025
PDF-Handbuch der Version 11.5.2
8. Januar 2025
Update 11.5.2
8. April 2024
Support für Python 3.11 und Windows
28. Juli 2023
Bugfix für die X11-Distributionen
22. Juli 2023
Update 11.5.1
25. April 2023
Support für Linux 64-bit auf IBM z Rechnern
30. Oktober 2022
Support für MingW 64-bit mit UCRT Runtime-Umgebung
28. September 2022
Release 11.5
15. März 2022
DISLIN-Buch Version 11 ist erhältlich
8. März 2017